Upper semi-Advanced Mappings in a Topological Spaces

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2022 by IJMTT Journal
Volume-68 Issue-7
Year of Publication : 2022
Authors : Omar y. khattab
 10.14445/22315373/IJMTT-V68I7P505

How to Cite?

Omar y. khattab, "Upper semi-Advanced Mappings in a Topological Spaces," International Journal of Mathematics Trends and Technology, vol. 68, no. 7, pp. 26-33, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I7P505

Abstract
In this paper, we introduce a new class of open sets is called is-open set. Also, we present the notion of is-continuous, is-open, is-irresolute, is-totally continuous, and is-contra-continuous mappings, and we investigate some properties of these mappings. Furthermore, we introduce some is separation axioms and the mappings are relate with is-separation axioms.

Keywords : is-open set, is-continuous, is-open mapping, is-irresolute, is-totally continuous, is-contra-continuous.

Reference

[1] S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, “α-Continuous and α-Open Mappings,” Acta Math.Hungar, vol. 41, no. 3-4, pp. 213–218, 1983.
[2] Arhangel. Skii A. V, Ludwig L, “On α-Normal and β-Normal Spaces,” Comment. Math Univ. Carolinae, vol. 42, no. 3, pp. 507- 519, 2001.
[3] E. Ekici and M. Caldas, “Slightly–Continuous Functions,” Bol. Soc. Para Mat., vol. 22, no. 2, pp. 63 – 7, 2004.
[4] J. Donchev, “Contra Continuous Functions and Strongly S-Closed Spaces,” Internat. J. Math. Math. Sci., vol. 19, pp. 303-310, 1996.
[5] J. Donchev and T. Noiri, “Contra Semi Continuous Functions,” Math. Panonica., vol. 10, no. 2, pp. 154-168, 1999.
[6] N. Biswas, “Some Mappings in Topological Spaces,” Bull. Cal. Math. Soc., vol. 61, pp. 127–133, 1969.
[7] N. Levine, “Semi-Open Sets and Semi-Continuity in Topological Spaces,” Amer. Math. Monthly, vol. 70, pp. 36-41, 1963.
[8] O. Njastad, “On Some Classes of Nearly Open Sets,” Pacific J. Math, vol. 15, pp. 961-970, 1965.
[9] R. L. Ellis, “A Non-Archimedean Analogue of the Tietze-Urysohn Extension Theorem,” Nederl. Akad.Wetensch. Proc. Ser.A, vol. 70, pp. 332-333, 1967.
[10] R. Staum, “The Algebra of Bounded Continuous Functions into a Non-Archimedean Field,” Pacific J. Math., vol. 50, pp. 169-185, 1974.
[11] S. G. Crossley and S. K, “Hildebrand Semi-Topological Properties Fund,” Math, vol. 74, pp. 233-254, 1972.
[12] S. Jafari and T. Noiri, “Contra-α-Continuous Functions Between Topological Spaces,” Iranian Int. J. Sci., vol. 2, pp. 153-167, 2001.
[13] S. N. Maheshwari and R. Prasad, “On s-Normal Spaces,” Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), vol. 22, no. 68, pp. 27- 29, 1978.
[14] S. N. Maheswari and S. S. Thakur, “On α-Irresolute Mappings,” Tamkang J. Math, vol. 11, pp. 209-214, 1980.
[15] S. W. Askander, M.Sc. Thesis, “The Property of Extended and Non-Extended Topological for Semi-Open, α-Open and i-Open Sets with Application,” College of Education, University of Mosul, 2011.
[16] T. Noiri, “Super Continuity and Some Strong Forms of Continuity,” Indian J. Pure Appl. Math, vol. 15, no. 3, pp. 241–250, 1984.
[17] Y. Beceren, “On Semi α-Irresolute Functions,” J. Indian. Acad. Math, vol. 22, pp. 353-362, 2000.
[18] Amir A. Mohammed Omar Y. Khattab, “On iα - Open Sets,” Raf. J. of Comp. & Math’s., vol. 9, no. 2, pp. 219-228, 2012.
[19] Omar Y. Khattab, M.S.c Thesis, “On iα-Open Sets in Topological Spaces and Their Application,” College of Education, University of Mosul, 2013.
[20] Tadoros, S. F, "ON α-Homeomorphism of Topological Space", AinShama Sci. Bull, vol. 28A, pp. 81-98, 1990.