MPolynomial of Windmill Graphs

International Journal of Mathematics Trends and Technology (IJMTT)  
© 2022 by IJMTT Journal  
Volume68 Issue7  
Year of Publication : 2022  
Authors : B. Basavanagoud, Goutam Veerapur, Pooja B 

10.14445/22315373/IJMTTV68I7P510 
How to Cite?
B. Basavanagoud, Goutam Veerapur, Pooja B, "MPolynomial of Windmill Graphs," International Journal of Mathematics Trends and Technology, vol. 68, no. 7, pp. 6674, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTTV68I7P510
Abstract
In this paper, we compute Mpolynomial of certain windmill graphs such as French windmill graph F_{n}^{(m)}, Dutch windmill graph D_{n}^{(m)}, Kulli cycle windmill graph C_{n+1}^{(m)}, Kulli path windmill graph P_{n+1}^{(m)}. Furthermore, we derive some degreebased topological indices from the obtained Mpolynomials.
Keywords : Mpolynomial, Windmill graphs, Edge partions, Degreebased topological indices.
Reference
[1] B. Basavanagoud, A. P. Barangi and P. Jakkannavar, “MPolynomial of Some Graph Operations and Cycle Related Graphs”, Iranian J. Math. Chem., vol.10, no. 2, pp. 127–150, 2019.
[2] B. Basavanagoud, A. P. Barangi, “MPolynomial of Some Cactus Chains and their Topological Indices”, Open J. Discrete Appl. Math., vol.2, no.2, pp. 59–67, 2019.
[3] B. Basavanagoud, G. Veerapur, “MPolynomial of Generalized Transformation Graphs”, Electron. J. Math. Anal. Appl., vol.8, no. 2, pp. 305–325, 2020.
[4] B. Basavanagoud, P. Jakkannavar, “MPolynomial and DegreeBased Topological Indices of Graphs”, Electron. J. Math. Anal. Appl., vol.8, no.1, pp.75–99, 2020.
[5] B. Chaluvaraju, H. S. Boregowda and S. A. Diwakar, “Hyper Zagreb Indices and their Polynomials of Some Special Kinds of Windmill Graphs”, Int. J. Math., vol.4, pp.21–32, 2017.
[6] E. Deutch, S. Klavžar, “MPolynomial and DegreeBased Topological Indies”, Iranian J. Math. Chem., vol.6, no.2, pp.93–102, 2015.
[7] J. A. Gallian, “Dynamic Survey of Graph Labeling,” Electron. J. Combin., #Ds6, 2007.
[8] F. Harary, Graph theory, AddisonWesley, Reading, 1969.
[9] V. R. Kulli, B. Chaluvaraju and H. S. Boregouda, “Computation of Connectivity Indices of Kulli Path Windmill Graph”, Twms J. Appl. Eng. Math., vol.8, no.1, pp.178–185, 2018.
[10] V. R. Kulli, B. Chaluvaraju and H. S. Boregouda, “Some Degree Based Connectivity Indices of Kulli Cycle Windmill Graphs”, South Asian J. Math., vol.6, no.6, pp.263–268, 2016.
[11] V. R. Kulli, “Computation of Status Indices of Graphs,” International Journal of Mathematics Trends and Technology, vol.65, no. 12, pp. 5461, 2019.
[12] V. R. Kulli, “Hyper ZagrebKBanhatti Index of a Graphs,” International Journal of Mathematics Trends and Technology, vol.66, no. 8, pp.123130, 2020.
[13] V. R. Kulli, “Harmonic ZagrebKBanhatti Indices of Graphs,” International Journal of Mathematics Trends and Technology, vol. 66, no.10, pp.123132, 2020.
[14] V. R. Kulli, Nirmala Index, International Journal of Mathematics Trends and Technology, vol.67, no.3, pp.812, 2021.
[15] M. Munir, W. Nazeer, S. Rafique and S. Kang, “MPolynomial and Realted Tolpological Indices of Nanostar Dendrimers”, Symmetry, vol.8, no. 9, pp.97, 2016.
[16] M. Munir, W. Nazeer, S. Rafique and S. Kang, “MPolynomial and Realted Tolpological Indices of Polyhex Nanotubes”, Symmetry, vol.8, no.12, pp.149, 2016.
[17] M. Munir, W. Nazeer, A. Rafique, S. Rafique and S. Kang, “ MPolynomial of DegreeBased Topological Indices of Titania Nanotubes ,” Symmetry, vol.8, no.11, pp.117, 2016.