Volume 68 | Issue 8 | Year 2022 | Article Id. IJMTT-V68I8P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I8P508
Received | Revised | Accepted | Published |
---|---|---|---|
01 Jul 2022 | 02 Aug 2022 | 15 Aug 2022 | 26 Aug 2022 |
Mohamed Kpangay, Leo O. Odongo, George O. Orwa, "An Extended Kumaraswamy-Gull Alpha Power Exponential Distribution: Properties and Application to Real Data," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 8, pp. 72-104, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I8P508
[1] R. D. Gupta, D. Kundu, Exponentiated exponential family: an alternative to gamma and weibull distributions, Biometrical Journal: Journal of Mathematical Methods in Biosciences 43 (1) (2001) 117–130.
[2] R. D. Gupta, D. Kundu, Generalized exponential distribution: Existing results and some recent developments, Journal of Statistical planning and inference 137 (11) (2007) 3537–3547.
[3] M. Ijaz, S. M. Asim, Lomax exponential distribution with an application to real-life data, PloS one 14 (12) (2019) e0225827.
[4] K. Modi, D. Kumar, Y. Singh, A new family of distribution with application on two real datasets on survival problem, Science & Technology Asia 25 (1) (2020) 1–10.
[5] G. M. Cordeiro, E. M. Ortega, D. C. da Cunha, The exponentiated generalized class of distributions, Journal of data science 11 (1) (2013) 1–27.
[6] G. M. Cordeiro, M. Alizadeh, T. G. Ramires, E. M. Ortega, The generalized odd half-cauchy family of distributions: properties and applications, Communications in Statistics-Theory and Methods 46 (11) (2017) 5685–5705.
[7] I. Ghosh, S. Nadarajah, On some further properties and application of weibull-r family of distributions, Annals of Data Science 5 (3) (2018) 387–399.
[8] M. H. Tahir, G. M. Cordeiro, M. Alizadeh, M. Mansoor, M. Zubair, G. G. Hamedani, The odd generalized exponential family of distributions with applications, Journal of Statistical Distributions and Applications 2 (1) (2015) 1–28.
[9] M. Alizadeh, M. Tahir, G. M. Cordeiro, M. Mansoor, M. Zubair, G. Hamedani, The kumaraswamy marshal-olkin family of distributions, Journal of the Egyptian Mathematical Society 23 (3) (2015) 546–557.
[10] A. Z. Afifya, G. M. Cordeiro, H. M. Yousof, Z. M. Nofal, A. Alzaatreh, The kumaraswamy transmuted-g family of distributions: properties and applications, Journal of Data Science 14 (2) (2016) 245–270.
[11] S. Chakraborty, L. Handique, The generalized marshall-olkinkumaraswamy-g family of distributions, Journal of data Science 15 (3) (2017) 391–422.
[12] M. E. Mead, A. Afify, N. S. Butt, The modified kumaraswamy weibull distribution: Properties and applications in reliability and engineering sciences, Pakistan Journal of Statistics and Operation Research 16 (3) (2020) 433–446.
[13] M. Ijaz, S. M. Asim, M. Farooq, S. A. Khan, S. Manzoor, A gull alpha power weibull distribution with applications to real and simulated data, Plos one 15 (6) (2020) e0233080.
[14] C. B. Ampadu, Gull alpha power of the chen type, Pharmacovigil and Pharmacoepi 3 (2) (2020) 16–17.
[15] C. B. Ampadu, Gull alpha power of the ampadu-type: Properties and applications, Earthline Journal of Mathematical Sciences 6 (1) (2021) 187–207.
[16] M. Kilai, G. A. Waititu, W. A. Kibira, M. Abd El-Raouf, T. A. Abushal, A new versatile modification of the rayleigh distribution for modeling covid-19 mortality rates, Results in Physics 35 (2022) 105260.
[17] M. Kilai, G. A. Waititu, W. A. Kibira, H. M. Alshanbari, M. ElMorshedy, A new generalization of gull alpha power family of distributions with application to modeling covid-19 mortality rates, Results in Physics 36 (2022) 105339.
[18] H. A. Khogeer, A. Alrumayh, M. Abd El-Raouf, M. Kilai, R. Aldallal, Exponentiated gull alpha exponential distribution with application to covid-19 data, Journal of Mathematics 2022 (2022).
[19] G. M. Cordeiro, M. de Castro, A new family of generalized distributions, Journal of statistical computation and simulation 81 (7) (2011) 883–898.
[20] J. F. Kenney, E. Keeping, Linear regression and correlation, Mathematics of statistics 1 (1962) 252–285.
[21] J. Moors, A quantile alternative for kurtosis, Journal of the Royal Statistical Society: Series D (The Statistician) 37 (1) (1988) 25–32.
[22] A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Vol. 4, University of California Press, 1961, pp. 547–562.
[23] R. D. Gupta, D. Kundu, Theory & methods: Generalized exponential distributions, Australian & New Zealand Journal of Statistics 41 (2) (1999) 173–188.
[24] K. Adepoju, O. Chukwu, Maximum likelihood estimation of the kumaraswamy exponential distribution with applications, Journal of Modern Applied Statistical Methods 14 (1) (2015) 18.
[25] M. V. Aarset, How to identify a bathtub hazard rate, IEEE transactions on reliability 36 (1) (1987) 106–108.