...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 69 | Issue 2 | Year 2023 | Article Id. IJMTT-V69I2P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I2P504

Exitence of touchdown solutions to MEMS control problem


Dang Le Anh Truong
Received Revised Accepted Published
22 Dec 2022 28 Jan 2023 09 Feb 2023 20 Feb 2023
Abstract

In this paper, we consider the following nonlocal model

                                                                 

The model is a well-known one to study micro-electromechanical systems (MEMS) devices. We prove the existence of touchdown solutions in the genera cases that  is an arbitrary bounded domain and ,  are positive numbers and f is not constant. 

Keywords
MEMS control, Model.
References

[1] J.A. Pelesko and A.A. Triolo, “Nonlocal problems in MEMS device control, Journal of Engineering Mathematics”, pp. 345-366, 2001.
[2] N. I. Kavallaris and T. Suzuki, “Non-local partial differential equations for engineering and biology”, Mathematics for Industry (Tokyo): Springer, Cham, 2018, p. xix+300.
[3] Jong-Shenq Gou and Bei Hu, “Quenching rate for a nonlocal problem arising in the micro-electro mechanical system”, Journal of Differential Equations, pp. 3285-3311, 2018.
[4] Jong-Shenq Gou và Philippe Souple, “No touchdown at zero points of the permittivity profile for the MEMS problem”, Siam J. Math. Anal, pp. 614-625, 2015.
[5] Jong-Shenq Gou and N. I. Kavallaris, “On a nonlocal parabolic problem arising in electrostatic MEMS control, Discrete and Continuous dynamical systems”, pp. 1723-1746, 2012.
[6] Jong-Shenq Gou, Bei Hu and C. J. Wang, “A nonlocal quenching problem arising in a micro-electro mechanical system”, Quart. Appl. Math., p. 25–734, 2009.
[7] P. Esposito and N. Ghoussoub, “Uniqueness of solutions for an elliptic equation modeling MEMS”, Methods Appl. Anal., 15
[8] N. Ghoussoub and Y. Guo, “On the partial differential equations of electrostatic MEMS devices: Stationary case”, SIAM J. Math. Anal., 38 (2006/07), 1423{1449.
[9] N. Ghoussoub and Y. Guo, “On the partial differential equations of electrostatic MEMS devices. II: Dynamic case”, NoDEA Nonlinear Di_. Eqns. Appl., 15 (2008), 115{145.
[10] Y. Guo, Z. Pan and M. J. Ward, “Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties”, SIAM J. Appl. Math., 66 (2005), 309{338.
[11] Y. Guo, “On the partial differential equations of electrostatic MEMS devices. III: Refined touchdown behavior”, J. Diff. Eqns., 244 (2008), 2277{2309.
[12] Y. Guo, “Global solutions of singular parabolic equations arising from electrostatic MEMS”, J.Diff. Eqns., 245 (2008), 809{844.
[13] Z. Guo and J. Wei, “Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity”, Comm. Pure Appl. Anal., 7 (2008), 765{786.
[14] G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, “Analysis of the dynamics and touchdown in a model of electrostatic MEMS”, SIAM J. Appl. Math., 67 (2006/07), 434{446.
[15] N. I. Kavallaris, T. Miyasita and T. Suzuki, “Touchdown and related problems in electrostatic MEMS device equation”, NoDEA Nonlinear Di_. Eqns. Appl., 15 (2008), 363{385.
[16] N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, “A hyperbolic non-local problem modelling MEMS technology”, Rocky Mountain J. Math., 41 (2011), 505{534.
[17] J. A. Pelesko and D. H. Bernstein, “Modeling MEMS and NEMS”, Chapman & Hall/CRC,Boca Raton, FL, 2003.
[18] J. S. Guo, “Recent developments on a nonlocal problem arising in the micro-electro mechanical system”, Tamkang J. Math. 45 (2014) 229–241
[19] M. Fila, J. Hulshof, “A note on the quenching rate”, Proc. Amer. Math. Soc. 112 (1991) 473–477.
[20] G. Flores, G. Mercado, J.A. Pelesko, N. Smyth, “Analysis of the dynamics and touchdown in a model of electrostatic MEMS”, SIAM J. Appl. Math. 67 (2007) 434–446.
[21] M.R. Boyd, S.B. Crary and M.D. Giles, “A heuristic approach to the electromechanical modeling of MEMS beams”, Technical Digest Solid-State Sensor and Actuator Workshop (1994) pp. 123–126.
[22] D. Bernstein, P. Guidotti and J.A. Pelesko, “Analytical and numerical analysis of electrostatically actuated mems devices”, Proceeding of Modeling and Simulation of Microsystems 2000 (2000) pp. 489–492.
[23] M.T.A. Saif, B.E. Alaca and H. Sehitoglu, “Analytical modeling of electrostatic membrane actuator micro pumps”, IEEE J. Microelectromech. Syst. 8 (1999) 335–344
[24] J.-S. Guo, B.-C. Huang, “Hyperbolic quenching problemwith damping in the micro-electromechanical system device”, Discrete Contin. Dyn. Syst. Series B, 19 (2014), 419-434.
[25] H.A. Levine, “Quenching, nonquenching, and beyond quenching for solution of some parabolic equations”, Ann.Mat. Pura Appl., 155 (1989), 243–260.

Citation :

Dang Le Anh Truong, "Exitence of touchdown solutions to MEMS control problem," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 2, pp. 29-36, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I2P504

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved