Volume 69 | Issue 2 | Year 2023 | Article Id. IJMTT-V69I2P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I2P505
Received | Revised | Accepted | Published |
---|---|---|---|
24 Dec 2022 | 30 Jan 2023 | 10 Feb 2023 | 20 Feb 2023 |
The Wheel graph on n+1 vertices is denoted by W1,n and is a graph obtained from the cycle graph Cn by joining all vertex of Cn to a new vertex called the center. In this paper, we compute the best possible bounds for the spectral radius and the distance energy of the wheel graph.
[1] I. Gutman the energy of graph. ber.math.Statist.sekt.forschungz graz.103(1978) , 1-22.
[2] R.B.Bapat, Graph and Matrices Hindustan book agency 2011.
[3] X.Li.Y.shi, gutman, graph energy springer , New York Heidelberg Dordrechet London 2012.
[4] G. caporossi. E. chasset and B. Furtla , some conjecture and properties on the distance energy . les cachiers du GERAD, 64(2009) , 1.7.
[5] A.D. Gungor and S.B. Bozkurt , on the distance spectral radius and distance energy of wheel graph , linear multilinear algebra 59(2011) (365- 370)
[6] G. Indulal , sharp bounds on the distance spectral radius and the distance energy of graph , linear Algebra appl. 430 (2009) 106 113.
[7] B.Zhou , on the largest eigenvalue of distance matrix of a tree MATCH commun.math.comput.chem 13 (2008)
[8] Kinkar ch.Das , on the largest eigenvalue of the distance matrix of bipartite graph MATCH commun.math.comput.chem 62(2009) 667-672.
[9] Muhammad Khurram Zafar, Abdul Qudair Baig, Muhammad Imran, and Andrea Semanicova-Fenovcikova, Energy of some wheel related graphs, Math. Sci. Lett. 4, No. 1, 5-8 (2015).
[10] Gopalapillai Indulal, Ivan Gutmanb, Ambat Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 461-472.
[11] Chandrashekar Adiga and M. Smitha, On Maximum Degree Energy of a Graph, Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 8, 385 - 396.
[12] Samir K. Vaidya, Kalpesh M. Popat, Some New Results on Energy of Graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 589-594.
[13] Chandrashekar Adiga, E. Sampathkumar, M.A. Sriraj, Shrikanth A. S, Color Energy of a Graph,Proceedings of the Jangjeon Mathematical Society 16(3).
[14] S. Sreeja, U. Mary,Minimum hub color energy of a graph, Malaya Journal of Matematik, Vol. 9, No. 1, 494-497, 2021.
[15] Gopalapillai Indulal, Ivan Gutman, and A. Vijaykumar, On distance energy of graph, MATCH Commun. Math. Comput. Chem. 60 (2008) 461-472.
[16] K. Ameenal Bibi, B. Vijayalakshmi, and R. Jothilak,Laplacian Minimum Dominating Energy of some special classes of Graphs, JETIR August 2018, Volume 5, Issue 8.
[17] Shajidmon Kolamban and M. Kamal Kumar, Various Domination Energies in Graphs, International J.Math. Combin. Vol.3(2018), 49-65.
[18] Hendra Cipta, The Spectrum Of Wheel Graph Using Eigenvalues Circulant Matrix,International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 6 June 2020.
[19] H. S. Ramane, D. S. Revankar, and A. B. Ganagi, On the wiener index of graph, J. Indones. Math. Soc. Vol. 18, No. 1 (2012), pp. 57–66.
[20] Jianzhong Xu, Jia-Bao Liu, Ahsan Bilal, Uzma Ahmad, Hafiz Muhammad Afzal Siddiqui, Bahadur Ali, and Muhammad Reza Farahani, Distance Degree Index of Some Derived Graphs, Mathematics 2019, 7, 283.
[21] M. R. Rajesh Kanna, R. Jagadeesh, B. K. Kempegowda, Minimum dominating seidel energy of graph, International Journal of Scientific and Engineering Research, Volume 7, Issue 5, May-2016.
[22] Poulomi Ghosh, Sachchida Nand Mishra, Anita Pal, Various Labeling on Bull Graph and some Related Graphs, International Journal of Applications of Fuzzy Sets and Artificial Intelligence (ISSN 2241-1240), Vol. 5 ( 2015), 23-35.
[23] Mahdieh Azari, On gutman index of thorn graphs, Kragujevac J. Sci. 40 (2018) 33-48.
[24] P. Dankelmann, I. Gutman, S. Mukwembi, H. C. Swart, On the Degree Distance of a Graph, Discrete Applied Mathematics, July 2009.
[25] Harishchandra S. Ramane, Deepak S. Revankar, and Asha B. Ganagi, On the wiener index of a graph, J. Indones. Math. Soc. Vol. 18, No. 1 (2012), pp.57–66.
R. B. Sahane, B. Surendranath Reddy, Rupali S. Jain, "Some results on Spectral radius and Distance energy of a Wheel graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 2, pp. 37-44, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I2P505