Volume 69 | Issue 2 | Year 2023 | Article Id. IJMTT-V69I2P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I2P513
Received | Revised | Accepted | Published |
---|---|---|---|
04 Jan 2023 | 08 Feb 2023 | 19 Feb 2023 | 28 Feb 2023 |
In this paper, we will study the rotation number on the sphere, and we will show that under certain conditions we can guarantee the existence of an essential hyperbolic periodic point in Moser generic diffeomorphism of the annulus.
[1] C. Robinson, Dynamical systems, Second edition, New York: CRC, Press, 1999.
[2] Welington De Melo, Lectures on One-Dimensional Dynamics, 17 Coloquio Brasileiro de Matemáticas, IMPA.
[3] Clark Robinson, “Closing Stable and Unstable Manifolds on Two Spheres,” Proceedings of the American Mathematical Society, vol. 41, no. 1, pp. 299-303, 1973. Crossref, https://doi.org/10.2307/2038860
[4] Jorge Sotomayor, Ordinary Differential Equations Lessons, Rio de Janeiro: IMPA, Projeto Euclides, 1979.
[5] M. Viana, Introducao teoría ergódica, Curso de Verao de Recife, IMPA. Enero de 2003.
[6] John Franks, “Rotation Vector and Fixed Points of Area Preserving Surface Diffeomorphisms,” Transactions of the American Mathematical Society, vol. 348, no. 7, pp. 2637-2662, 1996.
[7] John Franks, “Rotation Number and Instability Sets,” Bulletin of the American Mathematical Society, vol. 40, no. 3, pp. 263-279, 2003.
[8] John Franks, “Homology and Dynamical Systems”, American Mathematical Society, vol. 49, pp. 57- 92, 1993.
[9] John Franks, “Geodesics on S2 and Periodic Points of Annulus Homeomorphisms,” Inventiones Mathematics, vol. 108, pp. 403- 418, 1992. Crossref, https://doi.org/10.1007/BF02100612
[10] John Franks, “Area Preserving Homeomorphisms of Open Surfaces of Genus Zero,” New York Journal of Mathematics, vol. 2, pp. 1-19, 1996.
[11] John Franks, “Periodic Points of Hamiltonian Surface Diffeomorphisms,” Geometry and Topology, vol. 7, pp. 713-756, 2003.
[12] C. Bonatti, “Properties of dynamical system”, CNRS and institud de mathematique de Bourgogne, Francia 2 de sep 2005.
[13] Michael Handel, “The Rotation Set of a Homeomorphism of the Annulus is Closed,” Communications in Mathematical Physics, vol. 127, pp. 339-349, 1990. Crossref, https://doi.org/10.1007/BF02096762
[14] Michael R. Herman, “Simple Proofs of Local Conjugacy Theorems for Diffeomorphisms of the Circle with Almost Every Rotation Number,” Boletim da Sociedade Brasileira de Matemática, vol. 16, pp. 45-83, 1985. Crossref, http://doi.org/10.1007/bf02584836
[15] Sylvia Novo, Cermen Núñez, and Rafael Obaya, “Ergodic Properties and Rotation Number for Linear Hamiltonian Systems,” Journal of Differential Equations, vol. 148, no. 1, pp. 148-185, 1998. Crossref, http://doi.org/10.1006/jdeq.1998.3469
[16] Meirong Zhang, “The Rotation Number Approach to the Periodic Fuc caron ik Spectrum,” Journal of Differential Equations, vol. 185, no. 1, pp. 74-96, 2002. Crossref, http://doi.org/10.1006/jdeq.2002.4168
[17] R. Pavani, “A Numerical Approximation of the Rotation Number,” Applied Mathematics and Computation, vol. 73, no. 2-3, pp. 191-201, 1995. Crossref, https://doi.org/10.1016/0096-3003(94)00249-5
[18] M. Van Veldhuizen, “On the Numerical Approximation of the Rotation Number,” Journal of Computational and Applied Mathematics, vol. 21, no. 2, pp. 203-212, 1988. Crossref, https://doi.org/10.1016/0377-0427(88)90268-3
[19] R. Pavani, “The Numerical Approximation of the Rotation Number of Planar Maps,” Computers and Mathematics with Applications, vol. 33, no. 5, pp. 103-110, 1997. Crossref, https://doi.org/10.1016/S0898-1221(97)00023-0
[20] A. Lambert, R. Lima, and R. Vilela Mendes, “Rotation Number and Lyapunov Exponent in Two-dimensional Maps,” Physica D: Nonlinear Phenomena, vol. 34, no. 3, pp. 336-377, 1989. Crossref, https://doi.org/10.1016/0167-2789(89)90261-3
[21] Russell A. Johnson, “Exponential Dichotomy, Rotation Number, and Linear Differential Operators with Bounded Coefficients,” Journal of Differential Equations, vol. 61, no. 1, pp. 54-78, 1986. Crossref, https://doi.org/10.1016/0022-0396(86)90125-7 Fabián Sánchez Salazar & Cesar Augusto Rodríguez Duque / IJMTT, 69(2), 98-107, 2023 107
[22] Francois Puel, “The Rotation Number of Bounded Orbits in a Central Field,” Celestial Mechanics, vol. 29, no. 3, pp. 255-266, 1983. Crossref, https://doi.org/10.1007/BF01229139
[23] Hao Feng, and Meirong Zhang, “Optimal Estimates on Rotation Number of Almost Periodic Systems,”Journal of Applied Mathematics and Physics, (ZAMP), vol. 57, pp. 183-204, 2006. Crossref, http://doi.org/10.1007/s00033-005-0020-y
[24] Jaroslaw Kwapisz, “Poincare Rotation Number for Maps of the Real Line with Almost Periodic Displacement,”Nonlinearity, vol. 13, no. 5, pp. 1841-1854, 2000. Crossref, https://doi.org/10.1088/0951-7715/13/5/320
[25] Andres Navas, and Michele Triestino, “On the Invariant Distributions of C2 Circle Diffeomorphisms of Irrational Rotation Number,” Mathematische Zeitschrift, vol. 274, no. 1-2, pp. 315-321, 2013. Crossref, http://doi.org/10.1088/0951-7715/2F13/2F5/2F320
[26] R. Johnson, and J. Moser, “The Rotation Number for Almost Periodic Potentials,” Communications in Mathematical Physics, vol. 90, pp. 317-318, 1983. Crossref, http://doi.org/10.1007/bf01205510
[27] Marc Bonino, “Lefschetz Index for Orientation Reversing Planar Homeomorphisms,” Proceeding of the American Mathematical Society, vol. 130, no. 7, pp. 2173-2177, 2002.
[28] I.N. Pesin, “Caratheodory Theory of Prime Ends,” Siberian Mathematical Journal, vol. 7, pp. 865-870, 1966. Crossref, http://doi.org/10.1007/bf01044491
[29] E.F. Collingwood, and G. Piranian, “The Structure and Distribution of Prime Ends,” Archiv der Mathematik, vol. 10, pp. 379- 386, 1959. Crossref, https://doi.org/10.1007/BF01240815
[30] Andres Koropecki, Patrice Le Calvez, and Meysam Nassiri, “Prime Ends Rotation Numbers and Periodic Points,” Duke Mathematical Journal, vol. 164, no. 3, pp. 403-472, 2015. Crossref, http://doi.org/10.1215/00127094-2861386
[31] Vladimir Ryazanov, and Sergei Volkov “Prime Ends in the Mapping Theory on the Riemann Surfaces,” Journal of Mathematical Sciences, vol. 227, pp. 81-97, 2017. Crossref, https://doi.org/10.1007/s10958-017-3575-1
[32] John Franks, “Periodic Points and Rotation Number for Area Preserving Diffeomorphisms on the Plane,”Mathematical Publications of the Insitute of Advanced Scientific Studies, vol. 71, pp. 105-120. 1990. Crossref, https://doi.org/10.1007/BF02699879
[33] John Franks, and Patrice Le Calvez, “Regions of Instability for Non-twist Maps,’ Ergodic Theory and Dynamical System, vol. 23, no. 1, pp. 111-141, 2003. Crossref, https://doi.org/10.1017/S0143385702000858
[34] Pasquale Sconzo, “Contribution to the Solution of the Three-body Problem in Power Series Form,” Astronomische Nachrichten, vol. 290, no. 4, pp. 163-170, 1967. Crossref, http://doi.org/10.1002/asna.19672900405
[35] Florin Diacu, “Poincaré and the Three Body Problem,” Historia Mathematica, vol. 26, no. 2, pp. 175-178, 1999. Crossref, http://doi.org/10.1006/hmat.1999.2236
[36] Ernesto A. Lacomba, “Regularization by Surgery in the Restricted Three Body Problem,” Journal of Differential Equations, vol. 24, no. 2, pp. 240-252, 1977. Crossref, https://doi.org/10.1016/0022-0396(77)90148-6
[37] Robert W. Easton, “Parabolic Orbits in the Planar Three Body Problem,” Journal of Differential Equations, vol. 52, no. 1, pp. 116- 134, 1984. Crossref, https://doi.org/10.1016/0022-0396(84)90138-4
[38] A.I. Baz, “Particular Case of the Three-Body Problem,” Nuclear Physics, vol. 51, pp. 145-154, 1964. Crossref, https://doi.org/10.1016/0029-5582(64)90258-5
[39] W. Glockle, “Studies of the Three-body Problem,” Nuclear Physics A, vol. 175, no. 2, pp. 337-349, 1971. Crossref, http://doi.org/10.1016/0375-9474/2871/2990286-7
[40] George D. Birkhoff, “Proof of Poincaré Geometric Theorem,” Transactions of the American Mathematical Society, vol.14, no. 1, pp. 14-22, 1913. Crossref, https://doi.org/10.2307/1988766
[41] G. Hall. “Some problems on dynamics of annulus maps”, Hamiltonian Dynamical Systems. Contemporary Mathematics. Amer. Math.Soc, vol. 81, 1987.
[42] C. Ivorra, Topología Algebraica. [Online]. Available: https://www.uv.es/ivorra/Libros/TA.pdf
[43] D.B.A. Epstein, “Prime Ends,” Proceedings of the London Mathematical Society, vol. s3-42, no. 3, pp. 385-414, 1981. Crossref, https://doi.org/10.1112/plms/s3-42.3.385
[44] Ernest C. Schlesinger, “Conformal Invariants and Prime Ends,” American Journal of Mathematics, vol. 80, no. 1, pp. 83-102, 1958. Crossref, http://doi.org/10.2307/2372822
[45] J. Moser, Dynamical Systems, Theory and Applications, Lecture Notes in Physics, Springer, 1975.
[46] Jacob Palis, and Welington de Melo, Introduction to Dynamical Systems, IMPA: junio de, 1975.
[47] John Franks, and Michael Shub, “The Existence of Morse-Smale Diffeomorphisms,” Topology, vol. 20, no 3, pp. 273-290, 1981. Crossref, https://doi.org/10.1016/0040-9383(81)90003-3
Fabián Sánchez Salazar, Cesar Augusto Rodríguez Duque, "The Rotation Number in Moser Generic Diffeomorphisms of the Annulus," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 2, pp. 98-107, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I2P513