Volume 69 | Issue 2 | Year 2023 | Article Id. IJMTT-V69I2P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I2P516
| Received | Revised | Accepted | Published |
|---|---|---|---|
| 09 Jan 2023 | 11 Feb 2023 | 21 Feb 2023 | 28 Feb 2023 |
Manoj Kumar, Hemant Kumar Pathak, "On a solution of a Delay Differential Equation, via a New Iteration Scheme," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 2, pp. 124-146, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I2P516
[1] M. Abbas and T. Nazir A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn., 66(2), 223-234, (2014).
[2] T. Abdeljawad, K. Ullah and J. Ahmad, On Picard{Krasnoselskii Hybrid Iteration Process in Banach Spaces, Journal of Mathematics, Hindawi, 2020, 1-5, 2020.
[3] T. Abdeljawad, K. Ullah and J. Ahmad, Iterative Algorithm for Mappings Satisfying Bγ,μ Condition, Journal of Function Spaces Hindawi, (2020), 1-7, (2020).
[4] T. Abdeljawad, K. Ullah, J. Ahmad, M. D. L. Sen, and A. Ulhaq, Approximation of fixed points and best proximity points of relatively nonexpansive mappings, Journal of Mathematics, Hindawi, 2020, 1- 11, (2020).
[5] R.P. Agarwal, D. O'Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 8(1), 61-79, (2007).
[6] V. Berinde, On the stability of some fixed point procedures, Buletinul stiintific al Universitatii Baia Mare, Seria B, Fascicola matematica-Informatica, 18(1), 7-14, (2002).
[7] V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, (2007).
[8] O. Christopher, Imoru, O. Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian Journal of Mathematics, 19, 155-160, (2003).
[9] G. H. Coman, G. Pavel, I. Rus and I. A. Rus, Introduction in the theory of operational equation, Ed. Dacia, Cluj-Napoca, (1976).
[10] J. Garcia-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonex- pansive mappings, J. Math. Anal. Appl., 375(1), 185-195, (2011).
[11] C. Garodia and I. Uddin, A new iterative method for solving split feasibility problem, Journal of applied amalysis and computation, 3, 986-1004, (2020).
[12] C. Garodia and I. Uddin, A new fixed point algorithm for finding the solution of a delay differential equation. AIMS Mathematics, 5(4), 3182{3200, (2020).
[13] F. Gursoy and V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, 16, (2014).
[14] A. M. Harder and T. L. Hicks, A stable iteration procedure for non-expansive mappings. Math Japon, 33, 687{692, (1988)
[15] N. Hussain, K. Ullah and M. Arshad, Fixed point approximation of Suzuki generalized non-expansive mappings via new faster iteration process, Journal of nonlinear and convex analysis, 19(8), 1383{1393, (2018).
[16] S. Ishikawa, Fixed points by a new iteration method. Proc. Am. Math. Soc., 44, 147-150, (1974).
[17] W.R. Mann, Mean value methods in iteration. Proc. Am. Math. Soc., 4, 506-510, (1953). 22
[18] M. Kumar and H. K. Pathak, Numerical reckoning of fixed points for generalized nonexpansive mappings in CAT(0) spaces with applications. U. P. B. Sci. Bull., Series A, 84(2), 117-128, (2022).
[19] M.A. Noor, New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251(1), 217-229, (2000).
[20] A. Ofem and U. E. Udofia, Iterative solutions for common fixed points of nonexpansive mappings and strongly pseudocontractive mappings with applications. Canad. J. Appl. Math., 3(1), 18-36, (2021).
[21] G. A. Okeke and M. Abbas, A solution of delay differential equations via Picard{Krasnoselskii hybrid iterative process. Arab. J. Math., 2017(6), 21-29, (2017).
[22] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc., 73, 591-597, (1967).
[23] M. O. Osilike, Stability results for fixed point iteration procedures. J Nigerian Math Soc., 14, 17{29, 1995.
[24] A. M. Ostrowski, The round-off stability of iterations. Z Angew Math Mech., 47, 77{81, (1967).
[25] R. Pant and R. Shukla, Approximating fixed point of generalized α nonexpansive mappings in Banach spaces. Numer. Funct. Anal. Optim., 38, 248-266, (2017).
[26] B. Patir, N. Goswami and V. N . Mishra, Some results on fixed point theory for a class of generalized nonexpansive mappings. Fixed Point Theory and Applications, 2018(1), 1-18, (2018).
[27] H. Piri, B. Daraby, S. Rahrovi and M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process. Numer. Algorithm, 81, 1129- 1148 (2019).
[28] B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures. Indian J. Pure Applied Math., 21, 1-9, (1990).
[29] H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44, 375-380, (1974).
[30] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Appl., 340, 1088-1095, (2008).
[31] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Austral. Math. Soc., 43, 153-159, (1991). [32] S. M. Soltuz, Data dependence for Ishikawa iteration. Lecturas Matematicas, 25(2), 149{ 155, (2004).
[33] S.M. Soltuz and D. Otrocol, Classical results via Mann{Ishikawa iteration. Revue d'Analyse Numerique et de Theorie de l'Approximation. 36(2), 195{199, (2007).
[34] S. M. Soltuz, Grosan, T., Data dependence for Ishikawa iteration when dealing with contractive-like operators. Hindawi publishing corporation fixed point theory and applications, 2008, 1- 7, (2008).
[35] D. Thakur, B. S. Thakur and M. Postolache, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, Journal of Inequalities and Applications, (2014), 1-15, (2014).
[36] D. Thakur, B. S. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comp., 275, 147-155, (2016).
[37] K. Ullah and M. Arshad, New iteration process and numerical reckoning fixed points in Banach spaces, U. P. B. Sci. Bull., Series A, 79(4), 113-122, (2017).
[38] K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki's generalized non-expansive map- pings via new iteration process, Filomat, 32(1), 187-196, (2018).
[39] K. Ullah and M. Arshad, New three step iteration process and fixed point approximation in Banach spaces, Journal of Linear and Topological Algebra, 7(2), 87-100, (2018).
[40] H. Y. Zhou, Stable iteration procedures for of strong pseudocontractions and nonlinear equations. involving accretive operators without Lipschitz assumption. J Math Anal appl., 230, 1-10, (1999).