Volume 69 | Issue 4 | Year 2023 | Article Id. IJMTT-V69I4P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I4P505
| Received | Revised | Accepted | Published |
|---|---|---|---|
| 01 Mar 2023 | 03 Apr 2023 | 15 Apr 2023 | 28 Apr 2023 |
Ashok Munde, "Numerical Simulations of Prey-predator System with Holling Type-IV Functional Response," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 4, pp. 36-47, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I4P505
[1] J. F. Andrews, ”A mathematical model for the continuous culture of microoganisms utilizing inhibitory substrates”, Biotechnol. Bioeng., vol. 10, pp. 707-723, 1968. [CrossRef] [Google Scholar] [Publisher Link]
[2] H. Baek and C. Jung, ”Extinction and permanence of a Holling I type impulsive predator-prey model”, Kyungpook Math. J., vol. 49, no. 4 pp. 763-770, 2009. [Google Scholar] [Publisher Link]
[3] H. Baek, ”On the dynamical behavior of a two-prey one-predator system with two-type functional responses”, Kyungpook Math. J., vol. 53, pp. 674-660, 2013. [Google Scholar] [Publisher Link]
[4] P.A. Braza, ”The bifurcation structure of the Holling-Tanner model for predatorprey interactions using two timing”, SIAM Journal on Applied Mathematics, vol. 63, no. 3, pp. 889-904, 2003. [CrossRef] [Google Scholar] [Publisher Link]
[5] L. Cheng and L. Zhang, ”Bogdanov–Takens bifurcation of a Holling IV prey–predator model with constant-effort harvesting”, J. Inequal. Appl., vol. 68, 2021. [CrossRef] [Google Scholar] [Publisher Link]
[6] J. M. Cushing, ”Periodic Lotka-Volterra competition equations”, J. Math. Biol., vol. 24, pp. 381-403, 1986. [CrossRef] [Google Scholar] [Publisher Link]
[7] M. Fan and Y. Kuang, ”Dynamics of a nonautonomous predator-prey system with Beddington-DeAnglis functional response”, Journal of Mathematical Analysis and Applications, vol. 295, no. 1, pp. 15-39, 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[8] H. I. Freedman and R. M. Mathsen, ”Persistence in predator-prey systems with ratio-dependent predator influence”, Bulletin of Mathematical Biology, vol. 55, no. 4, pp. 817-827, 1993.
[Google Scholar] [Publisher Link] Numerical simulations of prey-predator system... 11
[9] S. Gakkhar and B. Singh, ”The dynamics of a food web consisting of two preys and a harvesting predator”, Chaos Solitons and Fractals, vol. 34, pp. 1346-1356, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[10] S. Gakkhar, B. Singh and R. K. Naji, ”Dynamical Behavior of two predators competing over a single prey”, Biosystems, vol. 90, pp. 808-817, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[11] C. S. Holling, ”The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation”, Mem. Entomolog. Soc. Can., vol. 45, pp. 5-60, 1965.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Jc. Huang, ”Bifurcations and Chaos in a Discrete Predator-prey System with Holling Type-IV Functional Response”, Acta Mathematicae Applicatae Sinica, English Series, vol. 21, pp. 157–176, 2005.
[CrossRef] [Google Scholar] [Publisher Link]
[13] Jc. Huang and Dm. Xiao, ”Analyses of Bifurcations and Stability in a Predatorprey System with Holling Type-IV Functional Response”, Acta Mathematicae Applicatae Sinica, English Series, vol. 20, pp. 167-178 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[14] Li Lin and Z. Wencai, ”Deterministic and stochastic dynamics of a modified Leslie-Gower prey-predator system with simplified Holling-type IV scheme”, Math. Biosci. Eng., vol. 18 no. 3, pp. 2813-2831, 2021.
[Google Scholar] [Publisher Link]
[15] D. Mukherjee, ”Fear induced dynamics on Leslie-Gower predator-prey system with Holling-type IV functional response” Jambura J. Biomath., vol. 3 no. 2, pp. 49–57, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[16] R. K. Naji and R. N. Shalan, ”The Dynamics of Holling Type IV Prey Predator Model with Intra- Specific Competition” Iraqi Journal of Science, vol. 54 no. 2, pp. 386-396, 2013.
[Google Scholar] [Publisher Link]
[17] C. Qiaoling, T. Zhidong and Hu Zengyun, ”Bifurcation and control for a discretetime prey–predator model with Holling-IV functional response”, International Journal of Applied Mathematics and Computer Science, vol. 23 no. 2, pp. 247- 261, 2013.
[CrossRef] [Google Scholar] [Publisher Link]
[18] S. Ruan and D. Xiao, ”Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response” SIAM J. Appl. Math., vol. 61, pp. 1445-1472, 2001.
[CrossRef] [Google Scholar] [Publisher Link]
[19] C. Shen, ”Permanence and global attractivity of the food-chain system with Holling IV type functional response”, Appl. Math and Comp., vol. 194, pp. 179- 185, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[20] W. Sokol and J. A. Howell, ”Kinetics of phenol oxidation by washed cells”, Biot. Bioe., vol. 30, pp. 921-927, 1987.
[CrossRef] [Google Scholar] [Publisher Link]
[21] J. P. Tripathi S. Abbas and M. Thakur, ”Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge”, Nonlinear Dyn., vol. 80, pp. 177–196, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[22] J. P. Tripathi, S. Abbas and M. Thakur, ”Local and global stability analysis of a two prey one predator model with help”, Commun Nonlinear Sci. Numer. Simulat., vol. 19, pp. 3284-3297, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[23] L. Xinxin and H. Qingdao, ”Analysis of optimal harvesting of a predator-prey model with Holling type IV functional response”, Ecological Complexity, vol. 42, 100816, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[24] D. Yanfei and Z. Yulin, ”Hopf Cyclicity and Global Dynamics for a Predator–Prey System of Leslie Type with Simplified Holling Type IV Functional Response”, International Journal of Bifurcation and Chaos, vol. 28 no. 13, 1850166, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[25] Z. Zhang, R. K. Upadhyay and J. Datta, ”Bifurcation analysis of a modified Leslie–Gower model with Holling type-IV functional response and nonlinear prey harvesting”, Adv. Differ. Equ., vol. 127, 2018.
[CrossRef] [Google Scholar] [Publisher Link]