Volume 69 | Issue 4 | Year 2023 | Article Id. IJMTT-V69I4P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I4P505
Received | Revised | Accepted | Published |
---|---|---|---|
01 Mar 2023 | 03 Apr 2023 | 15 Apr 2023 | 28 Apr 2023 |
In this paper, we consider a mathematical model for a prey-predator system with a simplified Holling type-IV functional response. Sufficient conditions are derived for the stability of the system around equilibrium points. By numerical simulation, it shows that the system exhibits rich dynamics under different sets of conditions and by taking the different parameter values of α.
[1] J. F. Andrews, ”A mathematical model for the continuous culture of microoganisms utilizing inhibitory substrates”, Biotechnol. Bioeng., vol. 10, pp. 707-723, 1968. [CrossRef] [Google Scholar] [Publisher Link]
[2] H. Baek and C. Jung, ”Extinction and permanence of a Holling I type impulsive predator-prey model”, Kyungpook Math. J., vol. 49, no. 4 pp. 763-770, 2009. [Google Scholar] [Publisher Link]
[3] H. Baek, ”On the dynamical behavior of a two-prey one-predator system with two-type functional responses”, Kyungpook Math. J., vol. 53, pp. 674-660, 2013. [Google Scholar] [Publisher Link]
[4] P.A. Braza, ”The bifurcation structure of the Holling-Tanner model for predatorprey interactions using two timing”, SIAM Journal on Applied Mathematics, vol. 63, no. 3, pp. 889-904, 2003. [CrossRef] [Google Scholar] [Publisher Link]
[5] L. Cheng and L. Zhang, ”Bogdanov–Takens bifurcation of a Holling IV prey–predator model with constant-effort harvesting”, J. Inequal. Appl., vol. 68, 2021. [CrossRef] [Google Scholar] [Publisher Link]
[6] J. M. Cushing, ”Periodic Lotka-Volterra competition equations”, J. Math. Biol., vol. 24, pp. 381-403, 1986. [CrossRef] [Google Scholar] [Publisher Link]
[7] M. Fan and Y. Kuang, ”Dynamics of a nonautonomous predator-prey system with Beddington-DeAnglis functional response”, Journal of Mathematical Analysis and Applications, vol. 295, no. 1, pp. 15-39, 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[8] H. I. Freedman and R. M. Mathsen, ”Persistence in predator-prey systems with ratio-dependent predator influence”, Bulletin of Mathematical Biology, vol. 55, no. 4, pp. 817-827, 1993.
[Google Scholar] [Publisher Link] Numerical simulations of prey-predator system... 11
[9] S. Gakkhar and B. Singh, ”The dynamics of a food web consisting of two preys and a harvesting predator”, Chaos Solitons and Fractals, vol. 34, pp. 1346-1356, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[10] S. Gakkhar, B. Singh and R. K. Naji, ”Dynamical Behavior of two predators competing over a single prey”, Biosystems, vol. 90, pp. 808-817, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[11] C. S. Holling, ”The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation”, Mem. Entomolog. Soc. Can., vol. 45, pp. 5-60, 1965.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Jc. Huang, ”Bifurcations and Chaos in a Discrete Predator-prey System with Holling Type-IV Functional Response”, Acta Mathematicae Applicatae Sinica, English Series, vol. 21, pp. 157–176, 2005.
[CrossRef] [Google Scholar] [Publisher Link]
[13] Jc. Huang and Dm. Xiao, ”Analyses of Bifurcations and Stability in a Predatorprey System with Holling Type-IV Functional Response”, Acta Mathematicae Applicatae Sinica, English Series, vol. 20, pp. 167-178 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[14] Li Lin and Z. Wencai, ”Deterministic and stochastic dynamics of a modified Leslie-Gower prey-predator system with simplified Holling-type IV scheme”, Math. Biosci. Eng., vol. 18 no. 3, pp. 2813-2831, 2021.
[Google Scholar] [Publisher Link]
[15] D. Mukherjee, ”Fear induced dynamics on Leslie-Gower predator-prey system with Holling-type IV functional response” Jambura J. Biomath., vol. 3 no. 2, pp. 49–57, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[16] R. K. Naji and R. N. Shalan, ”The Dynamics of Holling Type IV Prey Predator Model with Intra- Specific Competition” Iraqi Journal of Science, vol. 54 no. 2, pp. 386-396, 2013.
[Google Scholar] [Publisher Link]
[17] C. Qiaoling, T. Zhidong and Hu Zengyun, ”Bifurcation and control for a discretetime prey–predator model with Holling-IV functional response”, International Journal of Applied Mathematics and Computer Science, vol. 23 no. 2, pp. 247- 261, 2013.
[CrossRef] [Google Scholar] [Publisher Link]
[18] S. Ruan and D. Xiao, ”Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response” SIAM J. Appl. Math., vol. 61, pp. 1445-1472, 2001.
[CrossRef] [Google Scholar] [Publisher Link]
[19] C. Shen, ”Permanence and global attractivity of the food-chain system with Holling IV type functional response”, Appl. Math and Comp., vol. 194, pp. 179- 185, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[20] W. Sokol and J. A. Howell, ”Kinetics of phenol oxidation by washed cells”, Biot. Bioe., vol. 30, pp. 921-927, 1987.
[CrossRef] [Google Scholar] [Publisher Link]
[21] J. P. Tripathi S. Abbas and M. Thakur, ”Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge”, Nonlinear Dyn., vol. 80, pp. 177–196, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[22] J. P. Tripathi, S. Abbas and M. Thakur, ”Local and global stability analysis of a two prey one predator model with help”, Commun Nonlinear Sci. Numer. Simulat., vol. 19, pp. 3284-3297, 2014.
[CrossRef] [Google Scholar] [Publisher Link]
[23] L. Xinxin and H. Qingdao, ”Analysis of optimal harvesting of a predator-prey model with Holling type IV functional response”, Ecological Complexity, vol. 42, 100816, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[24] D. Yanfei and Z. Yulin, ”Hopf Cyclicity and Global Dynamics for a Predator–Prey System of Leslie Type with Simplified Holling Type IV Functional Response”, International Journal of Bifurcation and Chaos, vol. 28 no. 13, 1850166, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[25] Z. Zhang, R. K. Upadhyay and J. Datta, ”Bifurcation analysis of a modified Leslie–Gower model with Holling type-IV functional response and nonlinear prey harvesting”, Adv. Differ. Equ., vol. 127, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
Ashok Munde, "Numerical Simulations of Prey-predator System with Holling Type-IV Functional Response," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 4, pp. 36-47, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I4P505