Volume 69 | Issue 5 | Year 2023 | Article Id. IJMTT-V69I5P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I5P502
Received | Revised | Accepted | Published |
---|---|---|---|
22 Mar 2023 | 29 Apr 2023 | 05 Oct 2023 | 22 May 2023 |
Tran Dinh Son, "Exact Angle Trisection with Straightedge and Compass by Secondary Geometry," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 5, pp. 9-24, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I5P502
[1] Andrew M. Gleason, “Angle Trisection, the Heptagon, and the Triskaidecagon,” The American Mathematical Monthly, vol. 95, no. 3, pp. 185-194, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[2] M.L. Wantzel, “Research on the Means of Knowing Whether a Problem in Geometry can be Solved with Ruler and Compass,” pp. 366–372, 1837.
[Publisher Link]
[3] Underwood Dudley, The Trisectors, The Mathematical Association of America, 1994.
[Google Scholar]
[4] Robert C.Yates, The Trisection Problem, First Published in 1942.
[Google Scholar] [Publisher Link]
[5] Harold Scott Macdonald Coxeter, Introduction to Geometry (2nd Ed.), John Wiley & Sons, 1967.
[6] J.L. Heiberg, Euclid's Elements, Cambridge University Press, 1883.
[7] S. Lang, Geometry: Euclid and Beyond, Springer Science & Business Media, 1997.
[8] R.B. Nelsen, Proofs without Words II, Mathematical Association of America, 2001.
[9] W. Dunham, The Mathematical Universe, John Wiley & Sons, 2007.
[10] M. Field, and J. Jones, “Impossible Constructions,” Mathematical Gazette, vol. 56, no. 397, 15-22, 1972.
[11] J.B. Kennedy, “Angle Trisection, The Heptagon, and The Triskaidecagon,” American Mathematical Monthly, vol. 77, no. 8, pp. 851- 869, 1970.
[12] Mario Livio, The Golden Ratio: The Story of Phi, The World's Most Astonishing Number, Broadway Books, 2003.
[13] S.A. Stahl, “The Impossible Trisection Problem,” The College Mathematics Journal, vol. 24, no. 2, pp. 100-110, 1993.
[14] W. Szmielew, The Problem of Trisecting an Angle, Mathematica Slovaca, vol. 44, no. 3, pp. 321-342, 1994.
[15] Jean-Pierre Tignol, Galois' Theory of Algebraic Equations, World Scientific, 2001.
[16] B.L. Van der Waerden, A History of Algebra, Springer Science & Business Media, 1991.
[17] I.M. Yaglom, and V.G. Boltyanskii, Geometric Transformations II, Random House, 1962.
[18] J.K. Yu, Golden Section: Nature's Greatest Secret, World Scientific, 2005.
[19] H.J.M. Bos, and J. Smit, “Euclides Triangles,” New Archives for Mathematics, vol. 9, no. 4, pp. 227-235, 2008.
[20] Florian Cajori, History of Elementary Mathematics, The Macmillan Company, 1898.
[Google Scholar]
[21] H.W. Guggenheimer, Differential Geometry, Dover Publications, 1997.
[22] M. Hazewinkel, Encyclopedia of Mathematics, Springer Science & Business Media, 2001.
[23] W.R. Knorr, The Ancient Tradition of Geometric Problems, Dover Publications, 1986.
[24] Eli Maor, Trigonometric Delights, Princeton University Press, 1998.