Volume 69 | Issue 5 | Year 2023 | Article Id. IJMTT-V69I5P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I5P508
Received | Revised | Accepted | Published |
---|---|---|---|
02 Apr 2023 | 06 May 2023 | 17 May 2023 | 31 May 2023 |
Nguyen Thi Huyen, Dao Viet Cuong, "Matrix Associate with Holomorphic Functions Taking Values in Clifford Algebras," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 5, pp. 82-89, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I5P508
[1] V. Iftimie, “Fonction hypercomplexes,” Mathematical Bulletin of the Society of Mathematical Sciences of the Socialist Republic of Romania, vol. 9, no. 57, pp. 279-332, 1965.
[Google Scholar] [Publisher Link]
[2] V. Iftimie, “Operator of the Moisil–Theodorescu Type,” Mathematical Bulletin of the Society of Mathematical Sciences of the Socialist Republic of Romania, vol. 10, no. 58, pp. 271-305, 1966.
[Google Scholar] [Publisher Link]
[3] Richard Delanghe, “On Regular-Analytic Functions with Valeurs in a Clifford Algebra,” Mathematische Annalen, vol. 185, pp. 91 - 111, 1970.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Richard Delanghe, “On the Singularities of Functions with Valeurs in a Clifford Algebra,” Mathematische Annalen, vol. 196, no. 4, pp. 293 - 319, 1972.
[CrossRef] [Publisher Link]
[5] R. Delanghe, and F. Brackx, “Hypercomplex Function Theory and Hilbert Modules with Reproducing Kernels,” Proceedings of the London Mathematical Society, vol. s3-37, no. 3, pp, 545 - 576, 1978.
[CrossRef] [Google Scholar] [Publisher Link]
[6] N. Theodorescu, “The Areolar Derivative and Its Applications to Mathematical Physics,” Thèse, Paris, 1931.
[Google Scholar] [Publisher Link]
[7] N. Theodorescu, “Spatial Derivatives and Extension of Fundamental Differential Operators: Grad, Divet, rot of Field theory,” Mathematical Bulletin of the Society of Mathematical and Physical Sciences of the Romanian People's Republic, vol. 3, no. 51, pp. 363- 383, 1959.
[Google Scholar] [Publisher Link]
[8] N. Theodorescu, La dérivée aréolaire, Ann Roumains Math – Cahier 3, Bucarest, 1936.
[9] A. Angelescu, Sur une fommule de M. D. Pompéiu, Mathématica. Cluj. 1, p. 107, 1929.
[10] Miron Nicolescu, “Complex Functions in the Plane and in Space,” These, Paris, 1928.
[Google Scholar] [Publisher Link]
[11] Gr. C.Moisil, Sur les systèmes d’équations de M. Dirac, du type elliptique, C. R Paris, 191, p. 1292, 1930.
[12] Gr.C. Moisil, “On Monogeneous Quaternions,” Bulletin of Mathematical Sciences, vol. 55, p. 168, 1931.
[13] Gr. C. Moisil, “Holomorphic Functions in Space,” Mathematica, vol. 5, p. 142, 1931.
[14] Grigore Constantin Moisil, “On a Class of Systems of Partial Differential Equations in Physics,” Mathematics – Bucharest, 1931.
[Google Scholar]
[15] Huan Le Dy, “Some Basic Theorems About Holomorphic Vectors,” Sci. Rec., vol. 56, no. 2, p. 53, 1958.
[16] Neldelcu Coroi M., “An Application of the Spatial Derivative to the Equations of Elasticity in Space,” Rev de Math. Pures at appl., vol. 5, pp. 3-4, 1960.
[17] Neldelcu Coroi M., “The Areolar Polynomial of Order,” I. Rev de Math. Pures et appl, vol. 4, no. 4, 1959.
[18] Walter Nef, “The Inessential Singularities of the Regular Functions of a Quaternion Variable,” Commentarii Mathematici Helvetici, vol. 16, pp. 284-304, 1943.
[CrossRef] [Google Scholar] [Publisher Link]
[19] Luigi Sobréro, “Algebra of Hypercomplex Functions and Its Applications to the Mathematical Theory of Elasticity,” Memoirie dell’ Academia d’Italia, 1934.
[Google Scholar]
[20] Rud Von Fueter, “The Singularities of the Unique Regular Functions of a Quaternion Variable,” Commentarii Mathematici Helvetici, vol. 9, pp. 320-334, 1936.
[CrossRef] [Google Scholar] [Publisher Link]
[21] Rud Fueter, “On the Analytic Representation of the Regular Functions of a Quaternion Variable,” Commentarii Mathematici Helvetici, vol. 8, 371-378, 1935/36.
[Publisher Link]
[22] Bernd Goldschmidt, “Regularity Properties of Generalized Analytic Vectors in ℝn ,” Mathematische Nachrichten, vol. 103, no. 1, pp. 245- 254, 1981.
[CrossRef] [Google Scholar] [Publisher Link]
[23] Bernd Goldschmidt, “Existence and Representation of Solutions of a Class of Elliptic Systèmes of Partial Differential Equations of first Order in the Space,” Mathematische Nachrichten, vol. 108, no. 1, pp. 159-166, 1982.
[CrossRef] [Google Scholar] [Publisher Link]
[24] Bernd Goldschmidt, “A Cauchy Integral Formula for a Class of Elliptic Systèmes of Partial Differential Equations of First Order in the Space,” Mathematische Nachrichten, vol. 108, no. 1, pp. 167-178, 1982.
[CrossRef] [Google Scholar] [Publisher Link]
[25] R.P. Gilbert, and G.N. Hile, “Hilbert Function Modules with Reproducing Kernels,” Nonlinear Analysis: Theory, Methods and Applications, vol. 1, no. 2, pp. 135- 150, 1977.
[CrossRef] [Google Scholar] [Publisher Link]
[26] R.P. Gilbert, and G.N. Hile, “Hypercomplex Function Theory in the Sense of L. BERS,” Mathematische Nachrichten, vol. 72, no. 1, pp. 187- 200, 1976.
[CrossRef] [Google Scholar] [Publisher Link]
[27] David Colton, “Bergman Operators for Elliptic Equations in Four Independent Variables,” SIAM Journal, vol. 3, no. 3, 1972.
[CrossRef] [Google Scholar] [Publisher Link]
[28] David Colton, “Integral Operators for Elliptic Equations in Three Independent Variables,” Applicable Analysis, vol. 4, no. 1, pp. 77-95, 1974.
[CrossRef] [Google Scholar] [Publisher Link]
[29] F. Brackx, F. Sommen, and R. Dalanghe, Clifford Analysis, Pitman, Boston, London, Mebourne, 1982.
[30] W. Tutschke, “Classical and Modern Methods of complex Analysis,” Complex Analysis-Methods, Akademie-Verlag Berlin, 1983. [Google Scholar]
[31] Wolfgang Tutschke, “Reduction of the Problem of Linear Conjugation for First Order Nonlinear Elliptic Systems in the Plane to an Analogous Problem for Holomorphic Functions,” Analytic Functions Kozubnik, pp. 446-455, 1980.
[CrossRef] [Google Scholar] [Publisher Link]