Research Article | Open Access | Download PDF
Volume 69 | Issue 8 | Year 2023 | Article Id. IJMTT-V69I8P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V69I8P505
Interacting Tsallis Holographic Dark Energy Models
with Constant Deceleration Parameter
Vaibhav D. Bokey
Received |
Revised |
Accepted |
Published |
13 Jun 2023 |
28 Jul 2023 |
10 Aug 2023 |
25 Aug 2023 |
Abstract
In this work, we investigate an anisotropic and homogeneous Bianchi Type-I universe filled with Dark Matter
(DM) and Dark Energy (DE) in the framework of Einstein’s theory of Relativity. We choose an interaction between DM and
DE with the interacting term,𝑄 = 3𝐻𝛾𝜌𝑚, by considering Tsallis generalized entropy. The exact solutions of the field
equations are obtained by using the laws of the Hubble parameter proposed by Berman [1]. The EoS parameter of Tsallis
Holographic DE (THDE) is explaining the evolution of the universe as The EoS parameter is Phantom like, Quintessence
like and approaches to ΛCDM model. The EoS parameter, Anisotropy Parameter, Deceleration parameter, Total Energy
Density parameter are explained by graphical representation in both models. The results, we obtained are consistent with
the observational data.
Keywords
Tsallis holographic dark energy, Bianchi-I Universe, Constant deceleration parameter, General relativity.
References
[1] M. S. Berman, "A Special Law of Variation for Hubble's Parameter," IL Nuovo Cimento B Series 11, vol. 74, no. 2, pp. 182–186, 1983.
[CrossRef] [Google Scholar] [Publisher Link]
[2] S. Perlmutter et al., "Discovery of a Supernova Explosion at Half the Age of the Universe," Nature, vol. 391, pp. 51-54, 1998.
[CrossRef] [Google Scholar] [Publisher Link]
[3] S. Perlmutter et al., "Measurements of Ω and Λ from 42 High-Redshift Supernovae," The Astrophysical Journal, vol. 517, no. 2, pp. 565-586, 1999.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Alexei V. Filippenko, and Adam G. Riess, “Results from the High-z Supernova Search Team,” Physics Reports, vol. 307, no. 1-4, pp. 31-44, 1998.
[CrossRef] [Google Scholar] [Publisher Link]
[5] D. N. Spergel et al., "First-year Wilkinson Microwave Anisotropy Probe (WMAP)* Observations: Determination of Cosmological Parameters," The Astrophysical Journal Supplement Series, vol. 148, no. 1, pp. 175-194, 2003.
[CrossRef] [Google Scholar] [Publisher Link]
[6] Sean M. Carroll, "The Cosmological Constant," Living Reviews in Relativity, vol. 4, no. 1, pp. 1-56, 2001.
[CrossRef] [Google Scholar] [Publisher Link]
[7] T. Padmanabhan, Cosmological Constant—the Weight of the Vacuum," Physics Reports, vol. 380, no. 5, pp. 235-320, 2003.
[CrossRef] [Google Scholar] [Publisher Link]
[8] R. R. Caldwell, Rahul Dave, and Paul J. Steinhardt, "Cosmological Imprint of an Energy Component with General Equation of State," Physical Review Letters, vol. 80, no. 8, pp. 1582, 1998.
[CrossRef] [Google Scholar] [Publisher Link]
[9] C. Armendariz-Picon, V. Mukhanov, and Paul J. Steinhardt, "Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration," Physical Review Letters, vol. 85, pp. 4438, 2000.
[CrossRef [Google Scholar] [Publisher Link]
[10] Ujjal Debnath, Asit Banerjee, and Subenoy Chakraborty, “Role of Modified Chaplygin Gas in Accelerated Universe,” Classical and Quantum Gravity, vol. 21, pp. 5609, 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[11] M.R. Setare, "Holographic Chaplygin Gas Model," Physics Letters B, vol. 648, no. 5, pp. 329-332, 2007.
[CrossRef] [Google Scholar] [Publisher Link]
[12] K. S. Adhav et al., "Interacting Dark Matter and Holographic Dark Energy in Bianchi Type-V Universe," Astrophysics and Space Science, vol. 359, no. 1, pp. 24, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[13] K. S. Adhav et al., "Interacting Dark Fluid in Anisotropic Universe with Dynamical Deceleration Parameter," International Journal of Theoretical Physics, vol. 55, pp. 4384-4392, 2016.
[CrossRef] [Google Scholar] [Publisher Link]
[14] M. Kiran, D. R. K. Reddy, and V. U. M. Rao, "Minimally Interacting Holographic Dark Energy Model in Brans-Dicke Theory," Astrophysics and Space Science, vol. 356, pp. 407-411, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[15] D. R. K. Reddy, S. Anitha, and S. Umadevi, "Anisotropic Holographic Dark Energy Model in Bianchi Type-VI0 Universe in a Scalar–Tensor Theory of Gravitation," Astrophysics and Space Science, vol. 361, pp. 1-7, 2016.
[CrossRef] [Google Scholar] [Publisher Link]
[16] Vijay G. Mete, Vaibhav D. Bokey, and Vasant S. Bawane, "Interacting Holographic Dark Energy in Bianchi Type-V Universe with Variable Deceleration Parameter," Open Access Library Journal, vol. 6, no. 6, pp. 1-5, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[17] M. Abdollahi Zadeh et al., "Note on Tsallis Holographic Dark Energy," The European Physical Journal C, vol. 78, pp. 1-11, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[18] Shin’ichi Nojiri, and S. D. Odintsov, “Covariant Generalized Holographic Dark Energy and Accelerating Universe,” The European Physical Journal C, vol. 77, pp. 1-8, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[19] Constantino Tsallis, and Leonardo J. L. Cirto, “Black Hole Thermodynamical Entropy,” The European Physical Journal C, vol. 73, no. 7, pp. 1-7 , 2013.
[CrossRef] [Google Scholar] [Publisher Link]
[20] M. Koussour, and M. Bennai, "Interacting Tsallis Holographic Dark Energy and Tachyon Scalar Field Dark Energy Model in Bianchi Type-II Universe," International Journal of Modern Physics A, vol. 37, no. 5, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[21] M. Vijaya Santhi, and T. Chinnappalanaidu, "Marder Space-Time with Tsallis Holographic Dark Energy," International Journal of Geometric Methods in Modern Physics, vol. 19, p. 2250211, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[22] Bramha Dutta Pandey, Pankaj, and Umesh Kumar Sharma, “Phantom Model for Tsallis Holographic Dark Energy,” International Journal of Geometric Methods in Modern Physics, vol. 19, p. 2250215, 2022.
[CrossRef] [Google Scholar] [Publisher Link]
[23] Adam G. Riess et al., "Type Ia Supernova Discoveries at z> 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution," The Astrophysical Journal, vol. 607, no. 2, pp. 665-685, 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[24] Zong-Kuan Guo, Nobuyoshi Ohta, and Shinji Tsujikawa, "Probing the Coupling Between Dark Components of the Universe," Physical Review D, vol. 76, no. 2, pp. 023508, 2007.
[CrossRef] [Google Scholar] [Publisher Link
[25] M. A. H. MacCallum, "A Class of Homogeneous Cosmological Models III: Asymptotic Behavior," Communications in Mathematical Physics, vol. 20, pp. 57-84, 1971.
[CrossRef] [Google Scholar] [Publisher Link]
[26] Vipin Chandra Dubey et al., “Tsallis Holographic Dark Energy Models in Axially Symmetric Space Time,” International Journal of Geometric Methods in Modern Physics, vol. 17, no. 1, p. 2050011, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
Citation :
Vaibhav D. Bokey, "Interacting Tsallis Holographic Dark Energy Models
with Constant Deceleration Parameter," International Journal of Mathematics Trends and Technology (IJMTT), vol. 69, no. 8, pp. 36-44, 2023. Crossref, https://doi.org/10.14445/22315373/IJMTT-V69I8P505