Volume 6 | Number 1 | Year 2014 | Article Id. IJMTT-V6P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V6P504
An edge trimagic total labeling of a graph G(V, E) with p vertices and q edges is a bijection f from the set of vertices and edges to 1, 2, … , p+q such that for every edge uv in E, f(u)+f(uv)+f(v) is either 1 or 2 or 3. An edge trimagic total graph is called a super edge trimagic total if f(V) = {1, 2, . . ., p}. An edge trimagic total graph is called a superior edge trimagic total if f(E) = {1, 2, . . ., q}. In this paper we prove the disconnected graphs nP3, (K1, pK1, qK1, r), nP2K1, n+1, t copies of the sun graph Sn, nC4 and nC6 admits edge trimagic total labeling.
[1] J. Baskar Babujee, “On Edge Bimagic Labeling”, Journal of Combinatorics Information & System Sciences, Vol. 28, No.1- 4, 2004, pp. 239-244.
[2] J.Baskar Babujee, R. Jagadesh, “Super Edge Bimagic Labeling for Disconnected Graphs”, International Journal of Mathematics Engineering Sciences, Vol. 2, No. 2, pp. 171-175, 2008.
[3] S. Babitha, A. Amarajothi, J. Baskar Babujee, “Magic and Bimagic Labeling for Disconnected Graphs”, International Journal of Mathematics Trends and Technology, Vol. 3, No. 2, pp. 86-90, 2012.
[4] J.A. Gallian, “A Dynamic Survey of Graph Labeling”, Electronic Journal of Combinatorics, 19, DS6, 20
[5] C. Jayasekaran, M. Regees and C. Davidraj, “Edge Trimagic Labeling for some Graphs”Accepted for publication in the, International Journal of Combinatorial Graph Theory and Applications, 2013.
[6] C. Jayasekaran and M. Regees, “Edge Trimagic Total Labeling of Graphs” International Journal of Mathematical Sciences and Applications, Vol.3, No.1, pp. 295-320 (2013).
[7] A. Kotzig and A. Rosa, “Magic Valuations of finite graphs”, Canada math. Bull, Vol. 13, pp. 451 – 461,1970.
[8] Slamin, A.C. Prihandoko, T.B. Setiawan, F. Rosita, B. Shaleh, “Vertex – magic Total Labelings of Disconnected Graphs”, Journal of Prime Research in Mathematics, Vol. 2 (2006), 147 – 156.
[9] M. Regees and C. Jayasekaran, “More Results on Edge Trimagic Labeling of Graphs”, International Journal of Mathematical Archive – 4(11), (2013), pp.247 – 255.
[10] M. Regees and C. Jayasekaran, “Super Edge Trimagic Total Labeling of Graphs”, International Journal of Mathematical Archive – 4(12), (2013), pp. 156 – 164.
[11] M. Regees and C. Jayasekaran, “A-Vertex Consecutive Edge Trimagic Total Labeling of Graphs”, International Journal of Mathematical Sciences, Vol. 34, issue 1, (2014), pp. 1413 – 1419.
M. Regees , C. Jayasekaran, "Edge Trimagic Total Labeling for Disconnected Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 6, no. 1, pp. 43-53, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V6P504