Volume 7 | Number 1 | Year 2014 | Article Id. IJMTT-V7P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V7P505
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of Extended Lomax distribution, based on a complete sample. The proposed methodology can be used to obtain the Bayes estimates the parametric function such as reliability function, hazard function, etc under different loss functions and is also suitable for empirical modeling. A real data set is considered for illustration under non-informative and informative set of priors.
At kinson, A.B., & Harrison, A.J. (1978). Distribution of personal wealth in Britain. Cambridge University Press. Cambridge.
Balkema, A.A., & Haan, L.de (1974). Residual life at great age. Annals of Probability, 2, 792-804.
Brooks, S. and Gelman, A. (1998). Alternative methods for monitoring convergence of iterative simulations, Journal of computational and Graphical statistics, 7(4) 434-455.
Chen, M.H., & Shao, Q.M. (1999). Monte Carlo estimation of Bayesian credible intervals and HPD intervals. Journal of Computational and Graphical Statistics, 8(1), 69-92.
Chhikara, R.S. and J.L. Folks (1977). The inverse Gaussian distribution as a lifetime model. Technometrics 19, 461-468.
Dubey, S.D. (1970). Compound gamma, beta and F distributions. Metrika, 16, 227-231.
Gamerman, D. (1997). Markov chain Monte Carlo: Stochastic simulation for Bayesian inference. London: Chapman and Hall.
Gelfand, A.E., & Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities. Jour.Amer. Statist.Ass., 85,398-409.
Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511.
Gelman, A., Carlin, J., Stern, H.S., & Rubin, D.B. (1995). Bayesian Data Analysis. New-York: Chapman and Hall.
Geman, H., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions of Pattern Analysis and Machine Intelligence, 6, 721-741.
Gilks, W.R., Rechardson, S., Spiegelhalter, D.J. (1996). Markov chain Monte Carlo in practice. London: Chapman and Hall.
Harrish, C.M. (1968). The pareto distribution as a queue service discipline. Operation Research, 16, 307-313.
Hassan and Al. Ghamdi (2009). Optimum step stress accelerated life testing for Lomax distribution. Journal of Applied Science Research, 5, 2153-2164.
Kumar, V., Ligges, U. and Thomas, A. (2010). ReliaBUGS User Manual: A subsystem in OpenBUGS for some statistical models, Version 1.0, OpenBUGS 3.2.1. Retrieved from http://openbugs.info/w/Downloads/
Lomax, K. S. (1954) Business Failures; Another example of the analysis of failure data. Journal of the American Statistical Association, 49, 847–852.
Lunn, D.J., Andrew, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS - A Bayesian modeling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325-337.
Lunn, D.J., Jackson, C., Best, N., Andrew, A., & Spiegelhalter, D. (2013). The BUGS Book: A Practical Introduction to Bayesian Analysis, Chapman & Hall/CRC, London UK.
Marshall, A.W. & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84(3), 641-652.
Marshall, A.W. & Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. New York: Springer.
Robert, C.P., & Casella, G. (2004). Monte Carlo Statistical Methods (2nd ed.). New York: Springer-Verlag.
Tadikamalla, P.R. (1980). A look at the Burr and Related distributions. International Statistical Review, 48, 337-344.
Thomas, A. (2010). OpenBUGS Developer Manual, Version 3.1.2. Retrieved from http://www.openbugs.info// Thomas, A., O'Hara, B., Ligges, U., & Sturtz, S. (2006). Making BUGS Open. R News, 6, 12-17.
Venables, W.N., & Ripley, B.D. (2002). Modern Applied Statistics with S (4th ed.). New York: Springer.
Venables, W.N., Smith, D.M., & R Development Core Team (2010). An Introduction to R. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-12-7. Retrieved from http://www.r-project.org
Shankar Kumar Shrestha , Vijay Kumar, "Bayesian Analysis of Extended Lomax Distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 7, no. 1, pp. 33-41, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V7P505