Volume 7 | Number 1 | Year 2014 | Article Id. IJMTT-V7P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V7P507
In this paper,we have introduced new definition of golden graphs and hence pure golden graphs and characterized for acyclic graphs as pure golden graphs. Also generated a infinite class of,a path on nodes as golden graphs.
[1] D.M.Cvetkovic ,M.Doob,and H.Sachs, Spectra of graphs,Acadmec press ,New York , 1979.
[2] Diestel R. Graph Theory. New York: Springer-Verlag; 2000
[3] M.Doob,Graphs with a small number of distinct eigen values, Ann.N.Y.Acad.Sci. 175:104-110(1970).
[4] A.J.Hoffman , Some results on spectral properties of graphs, Beitrage Zur Graphentheorie(Kolloquium, Manebach, 1967) Leipzig, !968, 75-80.
[5] Livio M. The golden ratio: The story ofPhi, the world most astonishing number. New York: Broadway Books; 2002.
[6] L.Lovasz and J.Pelikan ,On the eigen values of trees, Periodica Mathmatica Hungarica Vol. 3 (1-2), 1973, pp. 175-182.
H.B. Walikar, Narayan Swamy, "Golden Graphs-I," International Journal of Mathematics Trends and Technology (IJMTT), vol. 7, no. 1, pp. 50-53, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V7P507