Volume 8 | Number 1 | Year 2014 | Article Id. IJMTT-V8P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V8P507
In this paper, we will study Z = type plane gravitational waves either for macro field or for micro matter field or for coupled macro and micro matter represented by perfect fluid and scalar meson matter field respectively do not exist in bimetric theory of gravitation formulated by Rosen[1].Only a vacuum model can be constructed.
[1] Rosen N. (1940) General Relativity and Flat space I. Phys. Rev.57, 147.
[2] Rosen N. (1973) A bimetric theory of gravitation I Gen. Rela. Grav. 04, 435-47.
[3] Takeno H. (1961) The mathematical theory of plane gravitational waves in General Relativity. Scientific report of Research Institute for theoretical Physics, Hiroshima University, Hiroshima, Ken, Japan (1961).
[4] Mohseni, M.; Tucker, R. W. ; Wang, C. (2001). On the motion of spinning test particles in Plane gravitational waves. Class. Quantum Grav. 18 3007-3017
[5] Kessari, S ; Singh, D. et al, (2002). Scattering of spinning test particles by plane gravitational and Electromagnetic waves. gr-qc/0203038,Class.Quant.Grav. 19 4943-4952
[6] Takeno, H. (1958). A comparison of plane wave solutions in general relativity with those in non-symmetric theory. Prog.Theor.Phys.20, 267-276
[7] Pandey, S. N. (1979). Plane wave solutions in Finzi’s non-symmetric unified field theory. Theo. Math. Phys. 39, 371-375
[8] Lal, K. B. ; Shafiullah, (1980). On plane wave solutions of non – symmetric field equations of unified theories of Einstein Bonner and Schrödinger . Annali de Mathematica ed pura Applicata.,126, 285-298.
[9] Lu Hui quing (1988). Plane gravitational waves under a non - zero cosmological constant. hin. Astronomy Astrophys. 12, 186- 190.
[10] Bondi, H. ; Pirani, F.A.E. and Robinson, I.(1959). Gravitational waves in general relativity III. Exact plane waves. Proc. Roy.Soc.Lond.A23, 25, 519-533
[11] Torre, C.G. (2006) Gravitational waves – Just plane symmetry. Gen. Rela. Grav. 38, 653-662
[12] Hogan, P.A.(1999). Gravitational waves and Bertotti- Robinson space- time. Math. Proc. Roy. Irish Acad. 99A, 51-55.
[13] Ronghe A.K. and Deo S.D. - Plane Gravitational Waves In Bimetric Relativity. JVR (2011) 6, 1-11
[14] Ronghe A.K. and Deo S.D. Plane gravitational waves with wet dark energy. International Journal of Mathematical Archive- 2(3) Mar.-391-392
Sulbha R. Suple, S. D. Deo, "Plane Gravitational Waves with Macro and Micro Matter Fields in Bimetric Relativity," International Journal of Mathematics Trends and Technology (IJMTT), vol. 8, no. 1, pp. 51-55, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V8P507