...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 9 | Number 2 | Year 2014 | Article Id. IJMTT-V9P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V9P514

Weak Reciprocally Continuity and Common Fixed Point Theorem in Complete Intuitionistic Fuzzy Metric Spaces


Surendra Singh Khichi , Amardeep Singh
Abstract

In this paper, we define the new concept of reciprocally and weak reciprocally continuity in complete intuitionistic fuzzy metric spaces and prove a common fixed point theorem for self mappings in intuitionistic fuzzy metric spaces under the condition of weak reciprocally continuous. All the results of this paper are new.

Keywords
Intuitionistic fuzzy metric space, continuous t-norm and t-conorm, common fixed point, coincidence point, weak reciprocally continuous maps
References

[1]. C. Alaca, D. Turkoglu and C. Yildiz: Fixed points in intuitionistic fuzzy metric spaces,Smallerit Choas, Solitons & Fractals, 29(5)(2006), 1073-1078.
[2]. K. Atanassov: Intuitionistic fuzzy sets, Fuzzy Sets and System, 20(1986), 87-96.
[3]. Z. K. Deng: Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86(1982), 74-95.
[4]. T. Fetz: Finite element method with fuzzy parameters, Vienna, Vol. 11, (1997), 81-92.
[5]. A. George and P. Veeramani: On some result in fuzzy metric space, Fuzzy Sets Systems 64 (1994), 395–399.
[6]. A. George and P. Veeramani: On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90(1997), 365-368.
[7]. G. Jungck: Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261-263.
[8]. G. Jungck: Compatible mappings and common fixed points, Internat. J. Math. Sci. 9(1986),771-779.
[9]. E. P. Klement, R. Mesiar and E. Pap: A characterization of the ordering of continuous t-norms, Fuzzy Sets and Systems, 86(1997), 189-195.
[10]. S. Kutukcu and S. Sharma: Some applications of Intuitionistic fuzzy metric spaces, J.Appl. Funct. Anal. And Cocp. Vol. 3(3) (2008), 269-283.
[11]. W. S.Law and E. K. Antonsson: An Engineering design examples, Fuzzy Stes and System, Vol. 1 (1994), 358–363.
[12]. S. Muralisankar and G. Kalpana: Common fixed point theorems in intuitionistic fuzzy metric spaces using general contractive condition of integral type. Int. J. Contemp. Math. Sci., 4(11), 505-518, 2009.
[13]. R. P. Pant: Common fixed points of noncommuting mappings, J. Math. Anal. Appl.,188(1994), 436–440.
[14]. R. P. Pant, R. P. Bisht and D. Arora: Weak reciprocal continuous and fixed point theorems,Ann. Uni. Ferrara, 57(2011), 181-190.
[15]. J. H. Park: Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22(2004), 1039-1046.
[16]. Point- Carle: Analysis Situs. J. DET. Ecole Polyrch., 2(1985), 1-123.
[17]. S. S. Rao and A. K. Dhingra: Application of fuzzy theories to muti-objective systems optimization. NASA contractor report 177573; 1991, NASA Ames Research Center.
[18]. N. Shahzad and M. A. Al-Thaga: Generalised I-nonexpansive self maps and invariants approximations. Acta Math. Sin., 24(5), 867-876, 2008.
[19]. B. Singh and M. S. Chouhan: Fuzzy metric spaces and fixed point theorems, Bull. Cal.Math. Soc. 89 (1997), 457-460.
[20]. D. Turkoglu, C. Alaca, Y. J. Cho and C. Yildiz: Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. & Computing, 22(2006), 411-424.
[21]. D. Turkoglu, C. Alaca, and C. Yildiz: Compatible maps and compatible maps of types () and () in intuitionistic fuzzy metric spaces, Demonstratio Math. 39(2006), 671-684.
[22]. M. D. Weiss: Fixed point and induced fuzzy topologies for fuzzy sets, J. Math. Anal. Appl.50(1975), 142-150.
[23]. L. A. Zadeh: Fuzzy sets, Inform. and Control 8(1965), 338-353.
[24]. D. Zi-Ke: Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86(1992),74-95.
[25]. H. J. Zimmermann and H. J. Sebastian: Intelligent system design support by fuzzy multi criteria decision making and/or evolutionary algorithms, Fuzzy Sets and Systems, Vol. 1(1995), 367-374.

Citation :

Surendra Singh Khichi , Amardeep Singh, "Weak Reciprocally Continuity and Common Fixed Point Theorem in Complete Intuitionistic Fuzzy Metric Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 9, no. 2, pp. 128-140, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V9P514

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved