Volume 9 | Number 2 | Year 2014 | Article Id. IJMTT-V9P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V9P514
In this paper, we define the new concept of reciprocally and weak reciprocally continuity in complete intuitionistic fuzzy metric spaces and prove a common fixed point theorem for self mappings in intuitionistic fuzzy metric spaces under the condition of weak reciprocally continuous. All the results of this paper are new.
[1]. C. Alaca, D. Turkoglu and C. Yildiz: Fixed points in intuitionistic fuzzy metric spaces,Smallerit Choas, Solitons & Fractals, 29(5)(2006), 1073-1078.
[2]. K. Atanassov: Intuitionistic fuzzy sets, Fuzzy Sets and System, 20(1986), 87-96.
[3]. Z. K. Deng: Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86(1982), 74-95.
[4]. T. Fetz: Finite element method with fuzzy parameters, Vienna, Vol. 11, (1997), 81-92.
[5]. A. George and P. Veeramani: On some result in fuzzy metric space, Fuzzy Sets Systems 64 (1994), 395–399.
[6]. A. George and P. Veeramani: On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90(1997), 365-368.
[7]. G. Jungck: Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261-263.
[8]. G. Jungck: Compatible mappings and common fixed points, Internat. J. Math. Sci. 9(1986),771-779.
[9]. E. P. Klement, R. Mesiar and E. Pap: A characterization of the ordering of continuous t-norms, Fuzzy Sets and Systems, 86(1997), 189-195.
[10]. S. Kutukcu and S. Sharma: Some applications of Intuitionistic fuzzy metric spaces, J.Appl. Funct. Anal. And Cocp. Vol. 3(3) (2008), 269-283.
[11]. W. S.Law and E. K. Antonsson: An Engineering design examples, Fuzzy Stes and System, Vol. 1 (1994), 358–363.
[12]. S. Muralisankar and G. Kalpana: Common fixed point theorems in intuitionistic fuzzy metric spaces using general contractive condition of integral type. Int. J. Contemp. Math. Sci., 4(11), 505-518, 2009.
[13]. R. P. Pant: Common fixed points of noncommuting mappings, J. Math. Anal. Appl.,188(1994), 436–440.
[14]. R. P. Pant, R. P. Bisht and D. Arora: Weak reciprocal continuous and fixed point theorems,Ann. Uni. Ferrara, 57(2011), 181-190.
[15]. J. H. Park: Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22(2004), 1039-1046.
[16]. Point- Carle: Analysis Situs. J. DET. Ecole Polyrch., 2(1985), 1-123.
[17]. S. S. Rao and A. K. Dhingra: Application of fuzzy theories to muti-objective systems optimization. NASA contractor report 177573; 1991, NASA Ames Research Center.
[18]. N. Shahzad and M. A. Al-Thaga: Generalised I-nonexpansive self maps and invariants approximations. Acta Math. Sin., 24(5), 867-876, 2008.
[19]. B. Singh and M. S. Chouhan: Fuzzy metric spaces and fixed point theorems, Bull. Cal.Math. Soc. 89 (1997), 457-460.
[20]. D. Turkoglu, C. Alaca, Y. J. Cho and C. Yildiz: Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. & Computing, 22(2006), 411-424.
[21]. D. Turkoglu, C. Alaca, and C. Yildiz: Compatible maps and compatible maps of types () and () in intuitionistic fuzzy metric spaces, Demonstratio Math. 39(2006), 671-684.
[22]. M. D. Weiss: Fixed point and induced fuzzy topologies for fuzzy sets, J. Math. Anal. Appl.50(1975), 142-150.
[23]. L. A. Zadeh: Fuzzy sets, Inform. and Control 8(1965), 338-353.
[24]. D. Zi-Ke: Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86(1992),74-95.
[25]. H. J. Zimmermann and H. J. Sebastian: Intelligent system design support by fuzzy multi criteria decision making and/or evolutionary algorithms, Fuzzy Sets and Systems, Vol. 1(1995), 367-374.
Surendra Singh Khichi , Amardeep Singh, "Weak Reciprocally Continuity and Common Fixed Point Theorem in Complete Intuitionistic Fuzzy Metric Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 9, no. 2, pp. 128-140, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V9P514