Volume 9 | Number 3 | Year 2014 | Article Id. IJMTT-V9P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V9P521
In this paper we study some properties of curvature tensor on semi-symmetric metric connection in a generalized space forms. As a consequence of these results we investigate the conditions for a generalized space forms to be -projectively semi-symmetric, -projectively semi-symmetric and Ricci semi-symmetric with respect to semi-symmetric metric connection. In all these cases the manifold becomes an -Einstein manifold.
[1] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian space-forms, Israel J. Math. 141(2004), 157-183.
[2] Alfonso Carriazo and Veronica Martin-Molina, Generalized -space forms and -homothetic deformations. Balkan Journal of Geometry and its Applications, Vol.16, No.1, 2011, 37-47.
[3] N.S.Agashe, M.R.Chafle, A semi-symmetric non-metric connection in a Riemannian manifold,Indian J.Pure Appl.Math.23(1992),399-409.
[4] B.B.Chaturvedi, P.N.Pandey, Semi-symmetric nonmetric connection on a Kahlerian manifold , DIFF.Geom.Dyn. Syst.,10(2008),86-90.
[5] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel Journal of Mathematics, Vol.91, No.1-3, 1995, 189-214.
[6] A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized -space forms, Mediterr. J. Math. DOI 10.1007/s00009-012-0196-2, April(2012).
[7] A.Friedmann, J.A.Schouten, Uber die Geometric der holbsyymmetrischen Ubertragurgen, Math.Z.21(1924),211-233.
[8] H.A.Hayden, Subspaces of space with torsion , Proc. London Math. Soc. 34(1932), 27-50.
[9] S.Sharfuddin, S.I.Husain, Semi-symmetric metric connections in almost contact manifolds, Tensor.30(1976),133-139.
[10] S.C.Biswas, U.C.De, On a type of semisymmetric non-metric connection on a Riemannian manifold , Ganita,48(1997),91-94.
[11] J.Sengupta, U.C.De, T.Q.Binh, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J.Pure Appl.Math.31(12)(2000).
[12] M.M.Tripathi, On a semi-symmetric metric connection in a Kenmotsu manifold, J.Pure Math.16 (1999), 67-71.
[13] M.M.Tripathi, N.Nakkar, On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bull.Cal.Math.Soc.16(2001), no.4,323-330.
[14] M.M.Tripathi, A new connection in a Riemannian manifold, International Electronic Journal of Geometry, 1,1 (2008),15-24.
[15] U.C.De., D.Kamilya, Hypersurfaces of Riemannian manifold with semi-symmetric non-metric connection, J.Indian Inst.sci.75(1995),707-710.
[16] U.C.De, J.Sengupta, On a type of semi-symmetric metric connection on an almost contact metric manifold, Facta Universitatis Ser.Math.Inform.16(2001),87-96.
[17] K.Yano, On semi-symmetric connections, Revue Roumain de Math.Pures Appl. 15(1970), 1579-1586.
[18] K.Yano , S.Sawaki, Riemannian manifolds admitting a conformal transformation group, J.Differential Geometry 2 (1968), 161-184.
Shivaprasanna G.S. , Y.B.Maralabhavi , Somashekhara G, "On Semi-Symmetric Metric Connection in a Generalized (k,μ) Space Forms," International Journal of Mathematics Trends and Technology (IJMTT), vol. 9, no. 3, pp. 173-188, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V9P521