Volume 9 | Number 3 | Year 2014 | Article Id. IJMTT-V9P522 | DOI : https://doi.org/10.14445/22315373/IJMTT-V9P522
In this paper, we define the new subclasses S(m,n) (β,γ,δ),R(m,n) (β,γ,δ ; μ), S(m,n) (α,β,γ,δ) and R(m,n) (α,β,γ,δ ; μ) of T(n) using generalized Ruscheweyh derivative and certain properties of neighborhoods for functions belonging to these classes are studied.
1. O. Altintas and H. M. Srivastava, Some Majorization problems associated with p-valently starlike and convex functions of complex order, East, Asian. Math. J., 17(2001), 175-183.
2.Al-Oboudi, On univalent functions defined by a generalized Sa ̌la ̌gean operator, Int.J. Math. Sci., (25-28), 2004, 1429-1436.
3.P. L. Duren, Univalent functions, Springer-Verlag, 1983.
4.A.W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Soc., 81 (1981), 521-527.
5.N Poornima and S. Latha, On certain properties of neighborhoods of analytic functions of complex order, Journal of Mathematics and Applications, No.38 (2008), 83-90.
6.St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49, 109-115, 1975.
7.G. S. Sa ̌la ̌gean, Subclasses of univalent functions, Lecture Notes in Mathe. Springer-Verlag, 2013( 1983), 362-372.
Dileep L , S. Latha, "Neighborhood Properties of Ruscheweyh Type Analytic Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 9, no. 3, pp. 189-191, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V9P522