Volume 9 | Number 3 | Year 2014 | Article Id. IJMTT-V9P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V9P524
Esra Polat , Suleyman Gunay, "A New Approach to Robust Partial Least Squares Regression Analysis," International Journal of Mathematics Trends and Technology (IJMTT), vol. 9, no. 3, pp. 197-205, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V9P524
[1] S. Engelen, M. Hubert, K. Vanden Branden, and S. Verboven, “Robust PCR and Robust PLSR: A comparative study”, In Theory and Applications of Recent Robust Methods (M. Hubert, G. Pison, A. Struyf and S. V. Aelst, eds.), Birkhäuser, Basel, pp. 105–117, 2004.
[2] J. A. Gil and R. Romera, “On robust partial least squares (PLS) methods”, Journal of Chemometrics, vol. 12, pp. 365-378, 1998.
[3] J. González, D. Peña, and R. Romera, “A robust partial least squares regression method with applications”, Journal of Chemometrics, vol. 23, pp. 78–90, 2009.
[4] A. J. Hardy, P. MacLaurin, S. J. Haswell, S. De Jong, and B. G. M. Vandeginste, “Double-case diagnostic for outliers identification”, Chemometrics and Intelligent Laboratory Systems , vol. 34, pp. 117-129, 1996.
[5] M. Hubert and K. Vanden Branden, “Robust methods for Partial Least Squares Regression”, Journal of Chemometrics, vol. 17, pp. 537-549, 2003.
[6] M. Hubert, P.J. Rousseeuw, and T. Verdonck, “A deterministic algorithm for robust location and scatter”, Journal of Computational and Graphical Statistics , vol. 21, pp. 618-637, 2012.
[7] T. Naes, “Multivariate calibration when the error covariance matrix is structured”, Technometrics, 27:3, pp. 301-311, 1985.
[8] E. Polat, “New Approaches in Robust Partial Least Squares Regression Analysis”, Ph.D Turkish Thesis, Hacettepe University Department of Statistics, Ankara, Turkey, March 2014.
[9] M. Riani, D. Perrotta, and F. Torti, “FSDA: A MATLAB toolbox for robust analysis and interactive data exploration”, Chemometrics and Intelligent Laboratory Systems , vol. 116, pp. 17–32, 2012.
[10] M. Salibian-Barrera, S. Van Aelst, and G. Willems, “PCA based on multivariate MM-estimators with fast and robust bootstrap”, Journal of the American Statistical Association , vol. 101, pp. 1198-1211, 2006.
[11] S. Serneels, C. Croux, P. Filzmoser, and P. J. Van Espen, “Partial Robust M-regression”, Chemometrics and Intelligent Laboratory Systems, vol. 79, pp. 55-64, 2005.